Why Technical English

Biofuels T o d a y

March 16, 2012
Leave a Comment

In today world biofuels steadily attract public attention. Continuing the topic discussed in Biofuels Reduce Emissions (part 1), Biofuels Reduce Emissions (part 2), B i o f u e l s – do they interest you? we present the further technical text on the same theme. The author of the following post Is bioethanol economic fuel? Ing. Jiří Souček, CSc., who participated on biofuel research in the Czech Republic, is responding to the situation with bioethanol in Ukraine, briefly described in the text immediately below the post.

Is bioethanol economic fuel?

By Jiří Souček

Bioethanol is definitely economic fuel in the countries, where it is produced from sugarcane  at price about 4 CZK/L. In the USA bioethanol is mainly made from corn and maize and its production is supported by the State. In the Czech Republic there are 3 large factories producing bioethanol. By the Czech legislation bioethanol is used as a complement to petrol in amount up to 4.2 %. 

In a continuous process, this USI bioethanol p...

Je bioetanol ekonomické palivo?

Jiří Souček

Bioetanol je jednoznačně ekonomické palivo v zemích, kde se vyrábí z cukrové třtiny v ceně asi 4 Kč/l.  V USA je výroba bioetanolu podporována státem a vyrábí se hlavně z obilí a kukuřice. V ČR jsou 3 velké závody na výrobu bioetanolu, který se používá jako přídavek do benzinu v množství 4,2 %, což je stanoveno zákonem.

English: Bio Ethanol on the Way A plant for ma...

Production and usage of biofuels (bioethanol, biodiesel, etc.) is proper:

  1. in the countries with agrarian overproduction;
  2. in the countries where usage of biofuels is compulsory or is subsidised through e.g. reduced or zero VAT.
Biopaliva (bioetanol, biodiesel aj.) je vhodné vyrábět a používat:  

  1. v zemích, kde je nadvýroba zemědělských produktů;
  2. v zemích, kde je povinnost použití biopaliv stanovená zákonem, nebo použití biopaliv dotováno například sníženou nebo nulovou DPH.
The application of biofuels is motivated:  

  1. By effort to reduce greenhouse gases;
  2. By farmland utilization and intensification of employment  in agriculture (development of countryside);
  3. By intention to depress all components of exhaust emissions including particulates and cancerogenic substances;
  4. By endevoir to diminish dependence on fossil fuels import (petroleum, natural gas).

 

Použití biopaliv je motivováno:Deutsch: Variante des Ford Focus Turnier mit B...

  1. Snahou o snížení emisí skleníkových plynů;
  2. Využitím zemědělské půdy a zlepšením zaměstnanosti v zemědělství (rozvoj venkova);
  3. Potřebou snížit exhalace všech složek výfukových plynů včetně kancerogenních látek;
  4. Snažením zmenšit závislost na dovozu fosilních surovin (ropa, zemní plyn).
Technical problems of bioethanol application as   a motor fuel, examined  in the mentioned Ukrainian article, have altogether been solved    as the fuels are widely used in EU countries, the USA, Brazil, etc. for about 20 years. Technické problémy použití bioetanolu jako motorového paliva, uvedené ve zmíněném ukrajinském článku, jsou v podstatě vyřešeny. Bioetanol totiž je ve velkém množství již 20 let používán v zemích EU, USA, Brazílii aj.
In my opinion the biofuels are just a transitional stage in the alternative motor propellants development and the future will belong to electrical motors and biomass as a row material in chemical and other branches of industry. Předpokládám, že biopaliva jsou přechodnou etapou ve vývoji pohonných hmot.  Budoucnost vidím v elektromotorech a využití biomasy jako suroviny v chemickém a jiném průmyslu.
By my calculations expenses on biodiesel production are 1.4 up to 1.8 times higher than those on motor oil. Biodiesel will be an item of competitiveness under present prices if the fuel oil production price increases more than 22 CZK/L (0.9 EUR/L), i.e. a retail price makes about 43 CZK/L (1.7 EUR/L). It corresponds to the petroleum price  about 150 USD/ mil. L.  Dle mých propočtů jsou náklady na biodiesel  přibližně 1,4 až 1,8 vyšší než na motorovou naftu. Biodiesel bude v ČR podle současných cenových relací konkurenceschopný, jestliže výrobní cena nafty vzroste na více než 22 Kč/l (0,9 EUR/l), tj. prodejní maloobchodní cena bude kolem 43 Kč/l (1,7 EUR/l). To odpovídá ceně ropy asi 150 USD/mil. l.

A brief outline of bioethanol perspectives  in Ukraine

Drown up by Galina Vítková using Биоэтанол. Гладко было на бумаге, да забыли про овраги by Andrey Stadnik, BFM Group Ukraine

Stručný přehled situace s bioetanolem na Ukrajině

Vypracovala Galina Vítková podle Andreye Stadnika, BFM Group Ukraine: Биоэтанол. Гладко было на бумаге, да забыли про овраги 

At present biofuels, primarily bioethanol are widely discussed in Ukraine. The public as well as state bodies demonstrate their interest in supporting bioethanol production in spite of arising  obstacles. The Ukrainian Ministry of economy development and trade is preparing the State programme      of stimulating production and application of alternative fuels. Since   January 2012 a range of laws on the same topic  is being developed. Everything is done assuming that bioethanol producers and users should have   some advantages as those in the USA, Brazil and EU countries. V současné době probíhá na Ukrajině hodně diskuzí o biopalivech, především o bioetanolu. Veřejnost a státní orgány projevují zájem výrobu bioetanolu podpořit i přes vyskytující se komplikace. Ministerstvo ekonomického rozvoje a obchodu Ukrajiny připravuje „Státní program stimulování výroby a použití alternativních druhů paliva“. Od ledna 2012 se připravuje řada zákonů na stejné téma. Vychází se z toho, že výrobce a spotřebitelé bioetanolu mají mít určitá zvýhodnění, jak je tomu v USA, Brazílii a zemích EU.
The Ukrainian biofuel market is at its beginnings. Ethyl alcohol or ethanol is produced in a small amount by two factories. Since the complement  of ethyl alcohol to petrol makes up to 10%, this composite fuel has the same VAT as ordinary petrol. Ukrajinský trh s biopalivem je v počátečním stádiu. Etanol vyrábí v malém množství jen dvě továrny. Vzhledem k tomu, že přídavek etanolu do benzinu tvoří až 10%, toto směsné palivo má stejné DPH jako obyčejný benzin.
There are also technical obstacles for massive usage of biofuels, the most important of which are as:

  1. Increase of electric conduction of petrol with bioethanol, which causes larger corrosion of a motor petrol tank, exhaust manifold, seals and other car components.
  2. Another technical problem concerns far higher temperature of bioethanol evaporation, which leads to troubles with firing and running  a motor while cold outdoor.
  3. But the most serious problem is increasing hygroscopicity of petrol with bioethanol, which causes great difficulties with the mixed fuel storing and transporting.       
Existují i technické překážky  pro masové použití biopaliva, z nichž nejdůležitější jsou tyto:

  1. Zvýšení elektrické vodivosti benzinu s bioetanolem, což vede k větší korozi nádrže auta, potrubí, těsnění a ostatního materiálu.
  2.  Dalším technickým problémem je značně vyšší teplota odpařování bioetanolu, což má za následek obtíže při zapalování motoru a rozjezdu auta  za nízkých teplot.
  3. Ale nejzávažnějším problémem je zvýšení hygroskopických vlastností benzinu s bioetanolem, které způsobuje velké nesnáze při  skladování a dopravě tohoto směsného paliva
From the economical viewpoint bioethanol production is characterised in such a way:

  1. Building a factory with productivity less than 60 kilotons (75 mil. L) is economically profitless.   
  2. Bioethanol production depletes the great amount of electricity.       
  3. Serious problems with sale of side products   of  bioethanol manufacture such as Dried Distillers Grains with Solubles (DDGS), carbonic acid gas, etc. also arise.
  4. Another great issue is row materials storing. Bioethanol in Ukraine is produced from corn and maize. The best solution is to buy them in necessary amount closely after picking harvest. For doing it large storage capacities need to be built.  
Podíváme-li se na ekonomickou stránku výroby bioetanolu, zjistíme, že:

  1. Výstavba továrny o výkonu menším než 60 tisíc t (75 mil.l) je ekonomicky nevýhodná.
  2. Výroba bioetanolu vyžaduje velkou spotřebu elektrické energie.
  3. Navíc vznikají problémy s odbytem vedlejších produktů výroby bioetanolu, například, výpalků (DDGS), oxidu uhličitého aj.
  4.  Dalším velkým problémem je skladování surovin. Bioetanol se na Ukrajině vyrábí z kukuřice a obilí. Tyto je nejlépe kupovat v potřebném množství ihned po sklizni úrody. To vyžaduje vybudování velkých skladovacích prostor. 

    Sustainable Feedstocks for Biofuels, Chemicals

Establishment of a vertically integrated holding, which would include all producing procedures  from plants growing up to sale, could be the best solution for these problems. At a rough estimate total expenses on such a holding erection may amount to a milliard EUR.

In author´s opinion such projects cannot be realised in Ukraine at present.  

Optimálním řešením může být vytvoření vertikálně integrovaného holdingu, jehož součástí jsou všechny výrobní procesy pěstováním  rostlin počínaje a odbytem konče. Celkové náklady na vybudování tohoto holdingu mohou odhadem činit až miliardu EUR.  

Podle autora se takovéto projekty nemohou  v současné době na Ukrajině realizovat. 

PS: The whole text of the article Биоэтанол. Гладко было на бумаге, да забыли про овраги is brought at http://www.bfm-ua.com.   PS: Plné znění článku Биоэтанол. Гладко было на бумаге, да забыли про овраги je uvedeno na http://www.bfm-ua.com.

What about you? What is your own opinion on bioethanol?

Write down a comment rather in English , but you may write it in Czech, too.

 A co Vy? Máte svůj vlastni  názor na bioetanol?

 Napište komentář, nejlépe anglicky, ale můžete napsat i česky.

NOTE

  • Kč  =  Czech crown (CZK)
  • DPH  =  VAT (value-added tax)
  • ČR  =  the Czech Republic

 

Advertisements

Website – basic information

November 28, 2011
7 Comments

Website and Its Characteristics

                                                                                             Composed by Galina Vitkova using Wikipedia

A website (or web site) is a collection of web pages, typically common to a particular domain name on the Internet. A web page is a document usually written in HTML (Hyper Text Markup Language), which is almost always accessible via HTTP (Hyper-Text Transport Protocol). HTTP is a protocol that transfers information from the website server to display it in the user’s web browser. All publicly accessible web sites constitute the immense World Wide Web of information. More formally a web site might be considered a collection of pages dedicated to a similar or identical subject or purpose and hosted through a single domain.

The pages of a website are approached from a common root URL (Uniform Resource Locator or Universal Resource Locator) called the homepage, and usually reside on the same physical server. The URLs of the pages organise them into a hierarchy. Nonetheless, the hyperlinks between web pages regulate how the reader perceives the overall structure and how the traffic flows between the different parts of the sites. The first on-line website appeared in 1991 in CERN (European Organization for Nuclear Research situated in the suburbs of Geneva on the Franco–Swiss border) – for more information see ViCTE Newsletter Number 5 – WWW History (Part1) / May 2009, Number 6 – WWW History (Part2) / June 2009.

A website may belong to an individual, a business or other organization. Any website can contain hyperlinks to any other web site, so the differentiation one particular site from another may sometimes be difficult for the user.

Websites are commonly written in, or dynamically converted to, HTML and are accessed using a web browser. Websites can be approached from a number of computer based and Internet enabled devices, including desktop computers, laptops, PDAs (personal digital assistant or personal data assistant) and cell phones.

Website Drafts and Notes

Image by Jayel Aheram via Flickr

A website is hosted on a computer system called a web server or an HTTP server. These terms also refer to the software that runs on the servers and that retrieves and delivers the web pages in response to users´ requests.

Static and dynamic websites are distinguished. A static website is one that has content which is not expected to change frequently and is manually maintained by a person or persons via editor software. It provides the same available standard information to all visitors for a certain period of time between updating of the site.

A dynamic website is one that has frequently changing information or interacts with the user from various situation (HTTP cookies or database variables e.g., previous history, session variables, server side variables, etc.) or direct interaction (form elements, mouseovers, etc.). When the web server receives a request for a given page, the page is automatically retrieved from storage by the software. A site can display the current state of a dialogue between users, can monitor a changing situation, or provide information adapted in some way for the particular user.

Static content may also be dynamically generated either periodically or if certain conditions for regeneration occur in order to avoid the performance loss of initiating the dynamic engine

Website Designer & SEO Company Lexington Devel...
Image by temptrhonda via Flickr

Some websites demand a subscription to access some or all of their content. Examples of subscription websites include numerous business sites, parts of news websites, academic journal websites, gaming websites, social networking sites, websites affording real-time stock market data, websites providing various services (e.g., websites offering storing and/or sharing of images, files, etc.) and many others.

For showing active content of sites or even creating rich internet applications plagins such as Microsoft Silverlight, Adobe Flash, Adobe Shockwave or applets are used. They provide interactivity for the user and real-time updating within web pages (i.e. pages don’t have to be loaded or reloaded to effect any changes), mainly applying the DOM (Document Object Model) and JavaScript.

There are many varieties of websites, each specialising in a particular type of content or use, and they may be arbitrarily classified in any number of ways. A few such classifications might include: Affiliate, Archive site, Corporate website, Commerce site, Directory site and many many others (see a detailed classification in Types of websites).

In February 2009, an Internet monitoring company Netcraft, which has tracked web growth since 1995, reported that there were 106,875,138 websites in 2007 and 215,675,903 websites in 2009 with domain names and content on them, compared to just 18,000 Web sites in August 1995.

 PS:  Spellingwhat is the better, what is correct: “website OR “web site?

The form “website” has gradually become the standard spelling. It is used, for instance, by such leading dictionaries and encyclopedias as the Canadian Oxford Dictionary, the Oxford English Dictionary, Wikipedia. Nevertheless, a form “web site” is still widely used, e.g. Encyclopædia Britannica (including its Merriam-Webster subsidiary). Among major Internet technology companies, Microsoft uses “website” and occasionally “web site”, Apple uses “website”, and Google uses “website”, too.

 PSS: Unknown technical terms you can find in the Internet English Vocabulary.

 Reference      Website – Wikipedia, the free encyclopedia

Have You Donated To Wikipedia Already?

Do you use Wikipedia? Do you know that Jimmy Wales, a foundator of Wikipedia, decided to keep Wikipedia advertising free and unbiased. So, they have financial problems with surviving now. Any donation, even a small sum is helpful. Thus, here’s the page where you can donate.

Dear visitor,  If you want to improve your professional English and at the same time to gain basic comprehensive targetted information about the Internet and Web, subscribe to “Why Technical English”.

Look at the right sidebar and subscribe as you like:

  • by Email subsription … Sign me up        
  • Subsribe with Bloglines
  • Subsribe.ru

Right now within preparing the e-book “Internet English” (see ViCTE Newsletter Number 33 – WWW, Part 1 / August 2011 ) posts on this topic are being published there. Your comments to the posts are welcome.

 Related articles

 


The Semantic Web – great expectations

October 31, 2011
3 Comments

By Galina Vitkova

The Semantic Web brings the further development of the World Wide Web aimed at interpreting the content of the web pages as machine-readable information.

In the classical Web based on HTML web pages the information is comprised in the text or documents which are read and composed into visible or audible for humans web pages by a browser. The Semantic Web is supposed to store information as a semantic network through the use of ontologies. The semantic network is usually a directed or undirected graph consisting of vertices, which represent concepts, and edges, which represent relations among the concepts.  An ontology is simply a vocabulary that describes objects and how they relate to one another. So a program-agent is able to mine facts immediately from the Semantic Web and draw logical conclusions based on them. The Semantic Web functions together with the existing Web and uses the protocol HTTP and resource identificators URIs.

The term  Semantic Web was coined by sir Tim Berners-Lee, the inventor of the World Wide Web and director of the World Wide Web Consortium (W3C) in May 2001 in the journal «Scientific American». Tim Berners-Lee considers the Semantic Web the next step in the developing of the World Wide Web. W3C has adopted and promoted this concept.

Main idea

The Semantic Web is simply a hyper-structure above the existing Web. It extends the network of hyperlinked human-readable web pages by inserting machine-readable metadata about pages and how they are related to each other. It is proposed to help computers “read” and use the Web in a more sophisticated way. Metadata can allow more complex, focused Web searches with more accurate results. To paraphrase Tim Berners-Lee the extension will let the Web – currently similar to a giant book – become a giant database. Machine processing of the information in the Semantic Web is enabled by two the most important features of it.

  • First – The all-around application of uniform resource identifiers (URIs), which are known as addresses. Traditionally in the Internet these identifiers are used for pointing hyperlinks to an addressed object (web pages, or e-mail addresses, etc.). In the Semantic Web the URIs are used also for specifying resources, i.e. URI identifies exactly an object. Moreover, in the Semantic Web not only web pages or their parts have URI, but objects of the real world may have URI too (e.g. humans, towns, novel titles, etc.). Furthermore, the abstract resource attribute (e.g. name, position, colour) have their own URI. As the URIs are globally unique they enable to identify the same objects in different places in the Web. Concurrently, URIs of the HTTP protocol (i.e. addresses beginning with http://) can be used as addresses of documents that contain a machine-readable description of these objects.

  • Second – Application of semantic networks and ontologies. Present-day methods of automatic processing information in the Internet are as a rule based on the frequency and lexical analysis or parsing of the text, so it is designated for human perception. In the Semantic Web instead of that the RDF (Resource Description Framework) standard is applied, which uses semantic networks (i.e. graphs, whose vertices and edges have URIs) for representing the information. Statements coded by means of RDF can be further interpreted by ontologies created in compliance with the standards of RDF Schema and OWL (Web Ontology Language) in order to draw logical conclusions. Ontologies are built using so called description logics. Ontologies and schemata help a computer to understand human vocabulary.

 

Semantic Web Technologies

The architecture of the Semantic Web can be represented by the Semantic Web Stack also known as Semantic Web Cake or Semantic Web Layer Cake. The Semantic Web Stack is an illustration of the hierarchy of languages, where each layer exploits and uses capabilities of the layers below. It shows how technologies, which are standardized for the Semantic Web, are organized to make the Semantic Web possible. It also shows how Semantic Web is an extension (not replacement) of the classical hypertext Web. The illustration was created by Tim Berners-Lee. The stack is still evolving as the layers are concretized.

Semantic Web Stack

As shown in the Semantic Web Stack, the following languages or technologies are used to create the Semantic Web. The technologies from the bottom of the stack up to OWL (Web Ontology Langure) are currently standardized and accepted to build Semantic Web applications. It is still not clear how the top of the stack is going to be implemented. All layers of the stack need to be implemented to achieve full visions of the Semantic Web.

  • XML (eXtensible Markup Language) is a set of rules for encoding documents in machine-readable form. It is a markup language like HTML. XML complements (but does not replace) HTML by adding tags that describe data.
  • XML Schema published as a W3C recommendation in May 2001 is one of several XML schema languages. It can be used to express a set of rules to which an XML document must conform in order to be considered ‘valid’.
  • RDF (Resource Description Framework) is a family of W3C specifications originally designed as a metadata data model. It has come to be used as a general method for conceptual description of information that is implemented in web resources. RDF does exactly what its name indicates: using XML tags, it provides a framework to describe resources. In RDF terms, everything in the world is a resource. This framework pairs the resource with a specific location in the Web, so the computer knows exactly what the resource is. To do this, RDF uses triples written as XML tags to express this information as a graph. These triples consist of a subject, property and object, which are like the subject, verb and direct object of an English sentence.
  • RDFS (Vocabulary Description Language Schema) provides basic vocabulary for RDF, adds classes, subclasses and properties to resources, creating a basic language framework
  • OWL (Web Ontology Language) is a family of knowledge representation languages for creating ontologies. It extends RDFS being the most complex layer, formalizes ontologies, describes relationships between classes and uses logic to make deductions.
  • SPARQL (Simple Protocol and RDF Query Language) is a RDF query language, which can be used to query any RDF-based data. It enables to retrieve information for semantic web applications.
  • Microdata (HTML)  is an international standard that is applied to nest semantics within existing content on web pages. Search engines, web crawlers, and browsers can extract and process Microdata from a web page providing better search results

As mentioned, top layers contain technologies that are not yet standardized or comprise just ideas. May be, the layers Cryptography and Trust are the most uncommon of them. Thus Cryptography ensures and verifies the origin of web statements from a trusted source by a digital signature of RDF statements. Trust to derived statements means that the premises come from the trusted source and that formal logic during deriving new information is reliable.


World Wide Web

September 3, 2011
Leave a Comment

Dear friends of Technical English,

I have just started publishing materials for my projected e-book devoted to the Internet English, i.e. English around the Internet. It means that during a certain period of time I will publish posts which will make basic technical texts in units of the mentioned e-book with a working name Internet English. The draft content of the e-book has already been published on my blog http://traintechenglish.wordpress.com in the newsletter Number 33 – WWW, Part 1 / August 2011. One topic in the list means one unit in the e-book.

Thus you find below the first post of a post series dealing with Internet English. I hope these texts will contribute to develop your professional English and at the same time will bring you topical information about the Internet.    Galina Vitkova

 

World Wide Web

 Composed by Galina Vitkova

The World Wide Web (WWW or simply the Web) is a system of interlinked, hypertext documents that runs over the Internet. A Web browser enables a user to view Web pages that may contain text, images, and other multimedia. Moreover, the browser ensures navigation between the pages using hyperlinks. The Web was created around 1990 by the English Tim Berners-Lee and the Belgian Robert Cailliau working at CERN in Geneva, Switzerland.

Today, the Web and the Internet allow connecti...

Today, the Web and the Internet allow connecti...

The term Web is often mistakenly used as a synonym for the Internet itself, but the Web is a service that operates over the Internet, as e-mail, for example, does. The history of the Internet dates back significantly further than that of the Web.

Basic terms

The World Wide Web is the combination of four basic ideas:

  • The hypertext: a format of information which in a computer environment allows one to move from one part of a document to another or from one document to another through internal connections (called hyperlinks) among these documents;
  • Resource Identifiers: unique identifiers used to locate a particular resource (computer file, document or other resource) on the network – this is commonly known as a URL (Uniform Resource Locator) or URI (Uniform Resource Identifier), although the two have subtle technical differences;
  • The Client-server model of computing: a system in which client software or a client computer makes requests of server software or a server computer that provides the client with resources or services, such as data or files;
  • Markup language: characters or codes embedded in a text, which indicate structure, semantic meaning, or advice on presentation.

 

How the Web works

Viewing a Web page or other resource on the World Wide Web normally begins either by typing the URL of the page into a Web browser, or by following a hypertext link to that page or resource. The act of following hyperlinks from one Web site to another is referred to as browsing or sometimes as surfing the Web. The first step is to resolve the server-name part of the URL into an Internet Protocol address (IP address) by the global, distributed Internet database known as the Domain name system (DNS). The browser then establishes a Transmission Control Protocol (TCP) connection with the server at that IP address.

TCP state diagram

TCP state diagram

The next step is dispatching a HyperText Transfer Protocol (HTTP) request to the Web server in order to require the resource. In the case of a typical Web page, the HyperText Markup Language (HTML) text is first requested and parsed (parsing means a syntactic analysis) by the browser, which then makes additional requests for graphics and any other files that form a part of the page in quick succession. After that the Web browser renders (see a note at the end of this paragraph) the page as described by the HyperText Markup Language (HTML), Cascading Style Sheets (CSS) and other files received, incorporating the images and other resources as necessary. This produces the on-screen page that the viewer sees.

Notes:

  • Rendering is the process of generating an image from a model by means of computer programs.
  • Cascading Style Sheets (CSS) is a style sheet language used to describe the look and formatting of a document written in a markup language.

 

Web standards

At its core, the Web is made up of three standards:

  • the Uniform Resource Identifier (URI), which is a string of characters used to identify a name or a resource on the Internet;
  • the HyperText Transfer Protocol (HTTP), which presents a networking protocol for distributed, collaborative, hypermedia information systems, HTTP is the foundation of data communication on the Web;
  • the HyperText Markup Language (HTML), which is the predominant markup language for web pages. A markup language presents a modern system for annotating a text in a way that is syntactically distinguishable from that text.

 


100% integration of renewable energies?

August 13, 2011
1 Comment

Composed by Galina Vitkova

The Renewables-Grid-Initiative (RGI) promotes effective integration of 100% electricity produced from renewable energy sources.

EnergyGreenSupply

Energy Green Supply

I do not believe in this statement RGI. I am sure that it is impossible from technical and technological points of view. Simply remind the very low share of renewables in entire production of world electricity (3% without hydroelectricity), very high investment costs and very high prices of electricity produced from renewables nowadays.

Concerns about climate and energy security (especially, in the case of nuclear power plants) are reasons supporting the efforts for a quick transformation towards a largely renewable power sector. The European emissions reduction targets to keep temperature increase below 2°C require the power sector to be fully decarbonised by 2050. Large parts of society demand that the decarbonisation is achieved predominantly with renewable energy sources.

Illustration: Different types of renewable energy.

Different types of renewable energy

Renewables advocates do not speak much about real solutions of real greatly complex problems of renewable sources. Very often they are not aware of them. Even if renewable energy technologies are now established and appreciated by officials and green activists as a key means of producing electricity in a climate and environment friendly way, many crucial problems remain unsolved. Additional power lines, which are needed for transporting electricity from new renewable generation sites to users, raise negative impact on the environment, including biodiversity, ecosystems and the landscape. Furthermore, electricity surpluses, produced by renewables when electricity consumption is very low, causes enormous problems with storage of these surpluses. Besides, there are serious problems with dispatch controlling of a power system with the great penetration (see Variability and intermittency of wind energy in Number 31 – Giving a definition / July 2011) of renewables. On the whole, three the most important problems are waiting to be solved and each of them demands massive investments:

  • building the additional electricity transmission lines in a great amount due to numerous and dispersed renewable sites;
  • accommodation of electricity storage needs in the case of electricity surpluses from renewables;
  • integration of intermittent sources of electricity production in scheduled control of power grids.

Thus, concerns about the impacts of renewables integration in European power systems need to be carefully studied, fully understood and addressed.

Let us closely consider the issues of building new transmission lines. In the coming decade thousands of kilometers of new lines should be built acrossEurope. Renewable energy sources are abundant and vary, but they are mostly available in remote areas where demand is low and economic activities infrequent. Therefore, thorough strategic planning is required to realise a new grid infrastructure that meets the electricity needs of the next 50-70 years. The new grid architecture is supposed to enable the integration of all renewable energy sources – independently from where and when they are generated – to expand the possibility for distributed generation and demand-side management.

Grid expansion is inevitable but often controversial. The transmission system operators (TSOs) need to accommodate not only the 2020 targets but also to prepare for the more challenging full decarbonisation of the power sector by 2050. The non-governmental organisations (NGO Global Network) community is still not united with respect to supporting or opposing the grid expansion. A number of technical, environmental and health questions need to be addressed and clarified to improve a shared understanding among and across TSOs and NGOs. RGI is trying to bring together cooperating TSOs and NGOs.

The grid expansion could be accomplished by means of overhead lines and underground cables. Both of them may transmit alternative current (AC) and direct current (DC). In the past it was relatively easy to select between lines and cables:

Cables mainly used in the grid for shorter distances mostly due to being more expensive and shorter technical lifetime (50% of overhead lines) whereas overhead lines were used in another cases. Nowadays the situation is more complex since more options and more parameters should be considered. In the future cables will prospectively be even more utilised as development is going towards higher power levels.

Cables have higher public acceptance because of their lower disturbance of natural scenery, lower electromagnetic radiation, avoidance of wildlife, higher weather tolerance. The overhead lines unfortunately disturb the scenery and seriously influence wildlife and protected areas.

The grid development for expanding the renewables by means of overhead lines endangers bird populations inEurope. High and large-scale bird mortality from aboveground power lines progresses due to:

  • Risk of electrocution,
  • Risk of collision,
  • Negative impacts on habitats.

And that all makes up a significant threat to birds and other wildlife. For these reasons Standards to protect birds (Habitats and Birds Directives) are being worked out. 

Moreover, the European Commission is currently working on a new legislation to ensure that the energy infrastructure needed for implementing the EU climate and energy targets will be built in time.

References


Intermittence of renewables

June 30, 2011
8 Comments

Composed by Galina Vitkova

Everybody knows that renewables are expensive, sometimes very expensive and make electricity price go up. For example, in the Czech Republic the expansion of building solar photovoltaic installations, donated from the state budget, caused increasing electricity price over 12 %. Another example of increasing the costs is given in the table below.

Increase in system operation costs (Euros per MW·h) for 10% and 20% wind share[7]

 

Germany

Denmark

Finland

Norway

Sweden

10%

2.5

0.4

0.3

0.1

0.3

20%

3.2

0.8

1.5

0.3

0.7

Nevertheless, only few people are aware of great intermittence of renewables, which excludes their usage as a main source of electricity generation not only nowadays, but in the future too. Actually no technical and industrial society can exist and develop using unreliable and intermittent power supplies. Nothing in our integrated and automated world works without electricity, this life-blood of technical civilisation. Just imagine what would happen to a society where electricity supply is turned off only for a short time, possibly every week, or if the power is cut for a whole fortnight or more. Life stops, production ceases, chaos sets in. And this is exactly what could arise if we bank on renewables. Thus let us take notice of features specific for wind and solar (photovoltaic) power installations, which are typically built in Europe. 

A straight line projection from where we are t...

Image via Wikipedia

The entire problem with renewables is that they are perilously intermittent power sources. The electricity produced using them is not harmonized with the electrical demand cycle. Renewable based installations generate electricity when the wind blows or the sun shines. Since the energy produced earlier in the day cannot be stored extra generating capacity will have to be brought on-line to cover the deficiency. This means that for every renewable based system installed, a conventional power station will have to be either built or retained to ensure continuity of energy supply. But this power station will have to be up and running all the time (i.e. to be a ’spinning-reserve’) because it takes up to 12 hours to put a power station on-line from a cold start-up. Thusly if we want to keep up continuity of supply the renewable sources result in twice the cost and save very little of fossil fuels.

Wind power is extremely variable. Building thousands of wind turbines still does not resolve the fundamental problem of the enormous wind variability. When days without significant winds occur, it doesn’t matter how many wind turbines are installed as they all go off-line. So, it is extremely difficult to integrate wind power stations into a normal generating grid.  

Solar energy is not available at night and cloudy days, which makes energy storage the most important issue in providing the continuous availability of energy. Off-grid photovoltaic systems traditionally use rechargeable batteries to store excess electricity. With grid-tied systems excess electricity can be sent to the transmission grid and later be settled.

Renewable energy supporters declare that renewable power can somehow be stored to cope with power outages. The first of these energy storage facilities, which comes to aid the thousands of wind-turbines motionless when winds do not blow and solar installations without generating when the sun does not shine, is the pumped water storage system. However, this claim is not well-founded for the following reasons:

  • In most countries of Europe pumped storage systems are already fully used for overpowering variability in electrical demand, and so as a rule they have no extra capacity for overcoming variability in supply due to the unreliable wind and solar generation systems.
  • Pumped storage systems have limited capacity, which can be used for electricity generating  for just a few hours, while wind or solar generation systems can go off-line for days or weeks at a time.
  • Pumped storage systems are not only hugely expensive to construct, the topography of european countries ensure that very few sites are available.

As for flywheel energy storage, compressed air storage, battery storage and hydrogen storage each of these systems is highly complicated, very expensive, hugely inefficient and limited in capacity. The hydrogen storage is especially popular and hyped among proponents of renewables. The hydrogen, produced and stored when renewables generate more electricity than it could be used, is supposed to propel vehicles and generators. Unfortunately these hydrogen powered vehicles and generators are only about 5% efficient. In addition, hydrogen storage vessels are highly flammable and potentially explosive. Practically nowadays there is no energy system available that can remotely be expected to replace renewable energy resources in a large scale, while they are out of functioning.

In numerous publications about renewables we are chiefly informed about expanding and increasing investments in renewables, multiplying their installed capacity and volumes of produced electricity, everything in absolute values, without comparing these indicators with values of other resources, especially when they speak about volumes of production. In the table below you find comparable values of volumes electricity produced by nuclear power plants and renewable installations. Look it through and have your own opinion of the problem.

Comparison of nuclear and renewable electricity producing by top nuclear electricity producers (TW·h-year/% of total electricity production in the country)

 

Country

Year

Nuclear  2007

Wind Power

Solar Power

1 USA 2009

837/19.4%

70.8/1.64%

0.808/0.019%

2 Japan 2008

264/23.5%

1.754/0.156%

0.002/0.000%

3 Russia 2008

160/15.8%

0.007/0.0007%

 

4 Germany 2010

141/22.3%

36.5/5.499%

12.0/1.898%

5 Canada 2008

93/14.6%

2.5/0.392%

0.017/0.003%

Conclusion: Common people must know and must interest about situation in producing and supplying electricity. Only then they will be able to enforce on the governments to make rightdecisions in order to ensure stable supplying electricity, without which modern civilisation cannot exist and improve.

 References:


Fuel cycle in fusion reactors

May 25, 2011
Leave a Comment

Composed by Galina Vitkova

Common notes

The basic concept behind any fusion reaction is to bring two or more nuclei close enough together, so that the nuclear force in nuclei will pull them together into one larger nucleus. If two light nuclei fuse, they will generally form a single nucleus with a slightly smaller mass than the sum of their original masses (though this is not always the case). The difference in mass is released as energy according to Albert Einstein’s mass-energy equivalence formula E = mc2. If the input nuclei are sufficiently massive, the resulting fusion product will be heavier than the sum of the reactants’ original masses. Due to it the reaction requires an external source of energy. The dividing line between “light” and “heavy” nuclei is iron-56. Above this atomic mass, energy will generally be released by nuclear fission reactions; below it, by fusion.

Fusion between the nuclei is opposed by their shared electrical charge, specifically the net positive charge of the protons in the nucleus. In response to it some external sources of energy must be supplied to overcome this electrostatic force. The easiest way to achieve this is to heat the atoms, which has the side effect of stripping the electrons from the atoms and leaving them as nuclei. In most experiments the nuclei and electrons are left in a fluid known as a plasma. The temperatures required to provide the nuclei with enough energy to overcome their repulsion is a function of the total charge. Thus hydrogen, which has the smallest nuclear charge, reacts at the lowest temperature. Helium has an extremely low mass per nucleon and therefore is energetically favoured as a fusion product. As a consequence, most fusion reactions combine isotopes of hydrogen (“protium“, deuterium, or tritium) to form isotopes of helium.

In both magnetic confinement and inertial confinement fusion reactor designs tritium is used as a fuel. The experimental fusion reactor ITER (see also The Project ITER – past and present) and the National Ignition Facility (NIF) will use deuterium-tritium fuel. The deuterium-tritium reaction is favorable since it has the largest fusion cross-section, which leads to the greater probability of a fusion reaction occurrence.

Deuterium-tritium (D-T) fuel cycle

D-T fusion

Deuterium-tritium (D-T) fusion

 

The easiest and most immediately promising nuclear reaction to be used for fusion power is deuterium-tritium Fuel cycle. Hydrogen-2 (Deuterium) is a naturally occurring isotope of hydrogen and as such is universally available. Hydrogen-3 (Tritium) is also an isotope of hydrogen, but it occurs naturally in only negligible amounts as a result of its radioactive half-life of 12.32 years. Consequently, the deuterium-tritium fuel cycle requires the breeding of tritium from lithium. Most reactor designs use the naturally occurring mix of lithium isotopes.

Several drawbacks are commonly attributed to the D-T fuel cycle of the fusion power:

  1. It produces substantial amounts of neutrons that result in induced radioactivity within the reactor structure.
  2. The use of D-T fusion power depends on lithium resources, which are less abundant than deuterium resources.
  3. It requires the handling of the radioisotope tritium. Similar to hydrogen, tritium is difficult to contain and may leak from reactors in certain quantity. Hence, some estimates suggest that this would represent a fairly large environmental release of radioactivity.

Problems with material design

The huge neutron flux expected in a commercial D-T fusion reactor poses problems for material design. Design of suitable materials is under way but their actual use in a reactor is not proposed until the generation later ITER (see also The Project ITER – past and present). After a single series of D-T tests at JET (Joint European Torus, the largest magnetic confinement experiment currently in operation), the vacuum vessel of the fusion reactor, which used this fuel, became sufficiently radioactive. So, remote handling needed to be used for the year following the tests.

In a production setting, the neutrons react with lithium in order to create more tritium. This deposits the energy of the neutrons in the lithium, for this reason it should be cooled to remove this energy. This reaction protects the outer portions of the reactor from the neutron flux. Newer designs, the advanced tokamak in particular, also use lithium inside the reactor core as a key element of the design.

PS: I strongly recommend to read the article FUSION(A Limitless Source Of Energy). It is a competent technical text for studying Technical English. Consequently it offers absorbing information about the topic.

 


Nuclear energy future after Fukushima

March 23, 2011
11 Comments
Composed by Galina Vitkova

What the damage to the Fukushima plant (see picture below) forecasts for Japan—and the world? But first, let us introduce general description of nuclear power stations in order to sense problems caused by the breakdown. 

 

The Fukushima 1 NPP

Image via Wikipedia

 Nuclear fission. Nowadays nuclear power stations generate energy using nuclear fission (Fukushima belongs to this type of nuclear power plants). Atoms of uranium (235) rods in the reactor are split in the process of fission and cause a chain reaction with other nuclei. During this process a large amount of energy is released. The energy heats water to create steam, which rotates a turbine together with a generator, producing electricity.

Depending on the type of fission, presumptions for ensuring supply of the fuel at existing level varies from several decades for the Uranium-235 to thousands of years for uranium-238. At the present rate of use, uranium-235 reserves (as of 2007) will be exhausted in about 70 years. The nuclear industry persuades that the cost of fuel makes a minor cost component for fission power. In future, mining of uranium sources could be more expensive, more difficult. However, increasing the price of uranium would have little brought about the overall cost of nuclear power. For instance, a doubling in the cost of natural uranium would increase the total cost of nuclear power by 5 percent. On the other hand, double increasing of natural gas price results in 60 percent growth of the cost of gas-fired power.

The possibility of nuclear meltdowns and other reactor accidents, such as the Three Mile Island accident and the Chernobyl disaster, have caused much public concern. Nevertheless, coal and hydro- power stations have both accompanied by more deaths per energy unit produced than nuclear power generation.

At present, nuclear energy is in decline, according to a 2007 World Nuclear Industry Status Report presented in the European Parliament. The report outlines that the share of nuclear energy in power production decreased in 21 out of 31 countries, with five fewer functioning nuclear reactors than five years ago. Currently 32 nuclear power plants are under construction or in the pipeline, 20 fewer than at the end of the 1990s.

Fusion. Fusion power could solve many of fission power problems. Nevertheless, despite research started in the 1950s, no commercial fusion reactor is expected before 2050. Many technical problems remain unsolved. Proposed fusion reactors commonly use deuterium and lithium as fuel.  Under assumption that a fusion energy output will be kept in the future, then the known lithium reserves would endure 3000 years, lithium from sea water would endure 60 million years. A more complicated fusion process using only deuterium from sea water would have fuel for 150 billion years.

Due to a joint effort of the European Union (EU), America, China, India, Japan, Russia and South Korea a prototype reactor is being constructed on a site in Cadarache (in France). It is supposed to be put into operation by 2018.

Initial projections in 2006 put its price at €10 billion ($13 billion): €5 billion to build and another €5 billion to run and decommission the thing. Since then construction costs alone have tripled.

As the host, the EU is committed to covering 45% of these, with the other partners contributing about 9% each. In May 2010 the European Commission asked member states to conduce an additional €1.4 billion to cope with the project over to 2013. Member states rejected the request.

Sustainability: The environmental movement emphasizes sustainability of energy use and development. “Sustainability” also refers to the ability of the environment to cope with waste products, especially air pollution.

The long-term radioactive waste storage problems of nuclear power have not been fully solved till now. Several countries use underground repositories. Needless to add nuclear waste takes up little space compared to wastes from the chemical industry which remains toxic indefinitely.

Future of nuclear industry. Let us return to how the damage to the Fukushima plant affects future usage of nuclear power in the future in Japan – and in the world.

Share of nuclear electricity production in total domestic production

Nowadays nuclear plants provide about a third of Japan’s electricity (see chart), Fukushima is not the first to be paralysed by an earthquake. But it is the first to be stricken by the technology dependence on a supply of water for cooling.

The 40-year-old reactors in Fukushima run by the Tokyo Electric Power Company faced a disaster beyond anything their designers were required to imagine.

What of the rest of the world? Nuclear industry supporters had hopes of a nuclear renaissance as countries try to reduce carbon emissions. A boom like that of the 1970s is talked, when 25 or so plants started construction each year in rich countries. Public opinion will surely take a dive. At the least, it will be difficult to find the political will or the money to modernise the West ageing reactors, though without modernisation they will not become safer. The heartless images from Fukushima, and the sense of lurching misfortune, will not be forgotten even if final figures unveil little damage to health. France, which has 58 nuclear reactors, seems to see the disaster in Japan as an opportunity rather than an obstacle for its nuclear industry. On March 14th President Nicolas Sarkozy said that French-built reactors have lost international tenders because they are expensive: “but they are more expensive because they are safer.”

However, the region where nuclear power should grow fastest, and seems to be deterred, is the rest of Asia. Two-thirds of the 62 plants under construction in the world are in Asia. Russia plans another ten. By far the most important arising nuclear power is China, which has 13 working reactors and 27 more on the way. China has announced a pause in nuclear commissioning, and a review. But its leaders know that they must go away from coal: the damage to health from a year of Chinese coal-burning plants is bigger then from nuclear industry. And if anyone can build cheap nuclear plants, it is probably the Chinese.

In case the West turns its back on nuclear power and China holds on, the results could be unfortunate. Nuclear plants need trustworthy and transparent regulation.

  References

  • The risks exposed: What the damage to the Fukushima plant portends for Japan—and the world; The Economist, March 19th 2011
  • Expensive Iteration: A huge international fusion-reactor project faces funding difficulties; The Economist, July 22nd 2010  

 

 


Game Theory in Computer Science

January 25, 2011
Leave a Comment


        By Galina Vitkova  

Computer science or computing science (sometimes abbreviated CS) is the study of the theoretical foundations of information and computation and of practical techniques for their implementation and application in computer systems. It concerns the systematic study of algorithmic processes that describe and transform information. Computer science has many sub-fields. For example, computer graphics, computational complexity theory (studies the properties of computational problems), programming language theory (studies approaches to describing computations), computer programming (applies specific programming languages to solve specific problems), and human-computer interaction (focuses on making computers universally accessible to people) belong to such very important sub-fields of computer science. 

Game theory has come to play an increasingly important role in computer science. Computer scientists have used games to model interactive computations and for developing communication skills. Moreover, they apply game theory as a theoretical basis to the field of multi-agent systems (MAS), which are systems composed of multiple interacting intelligent agents (or players). Separately, game theory has played a role in online algorithms, particularly in the k-server problem.

Interactive computation is a kind of computation that involves communication with the external world during the computation. This is in contrast to the traditional understanding of computation which assumes a simple interface between a computing agent and its environment. Unfortunately, a definition of adequate mathematical models of interactive computation remains a challenge for computer scientists. 

 
An online algorithm is the one that can process its input piece-by-piece in a serial mode, i.e. in the order that the input is fed to the algorithm, without having the entire input available from the start of the computation. On the contrary, an offline algorithm is given the whole problem data from the beginning and it is required to output an answer which solves the problem at hand.    

An animation of the quicksort algorithm sortin...

Image via Wikipedia

 (For example, selection sort requires that the entire list be given before it can sort it, while insertion sort doesn’t.) As the whole input is not known, an online algorithm is forced to make decisions that may later turn out not to be optimal. Thus the study of online algorithms has focused on the quality of decision-making that is possible in this setting.

The Canadian Traveller Problem exemplifies the concepts of online algorithms. The goal of this problem is to minimize the cost of reaching a target in a weighted graph where some of the edges are unreliable and may have been removed from the graph. However, the fact that an edge was removed (failed) is only revealed to the traveller when she/he reaches one of the edge’s endpoints. The worst case in study of this problem is simply a situation when all of the unreliable edges fail and the problem reduces to the usual Shortest Path Problem. This 

Johnson's algorithm for transforming a shortes...

Image via Wikipedia

 

 problem concerns detecting a path between two vertices (or nodes) of the graph such that the sum of the weights of its edges is minimized. An example is finding the quickest way to get from one location to another on a road map. In this case, the nodes represent locations, the edges represent segments of road and are weighted by the time needed to travel that segment.

The k-server problem is a problem of theoretical computer science in the category of online algorithms. In this problem, an online algorithm must control the movement of a set of k servers, represented as points in a metric space, and handle requests that are also given in the form of points in the space. As soon as a request arrives, the algorithm must determine which server to be moved to the requested point. The goal of the algorithm is to keep the total distance all servers move small, relative to the total distance the servers could have moved by an optimal adversary who knows in advance the entire sequence of requests.

The problem was first posed in 1990. The most prominent open question concerning the k-server problem is the so-called k-server conjecture. This conjecture states that there is an algorithm for solving the k-server problem in an arbitrary metric space and for any number k of servers. The special case of metrics in which all distances are equal is called the paging problem because it models the problem of page replacement algorithms in memory caches. In a computer operating system that uses paging for virtual memory management, page replacement algorithms decide which memory pages to page out (swap out, write to disk) when a page of memory needs to be allocated. Paging happens when a page fault occurs and a free page cannot be used to satisfy the allocation, either because there are none, or because the number of free pages is lower than a set threshold. 

 


Tactical Media and games

December 1, 2010
Leave a Comment

Composed by Galina Vitkova

  

Introductory notes

Tactical media is a form of media activism that uses media and communication technologies for social movement and privileges temporary, hit-and-run interventions in the media sphere. Attempts to spread information not available by mainstream news are also called media activism. The term was first introduced in the mid-1990s in Europe and the United States by media theorists and practitioners. Since then, it has been used to describe the practices of a vast array of art and activist groups. Tactical media also shares something with the hacker subculture, and in particular with software and hardware hacks which modify, extend or unlock closed information systems and technologies.

Tactical Media in Video Games

Video games have opened a fully new approach for tactical media artists. This form of media allows a wide range of audiences to be informed of a specific issue or idea. Some examples of games that touch on Tactical Media are Darfur is Dying and September 12. One example of a game design studio that works in tactical media is TAKE ACTION games (TAG). The video game website www.newsgaming.com greatly embodies the idea of tactical media in video games. Newsgaming coins this name as a new genre that brings awareness of current news related issues based on true world events apposed to fantasy worlds that other video games are based upon. It contributes to emerging culture that is largely aimed at raising awareness about important matters in a new and brilliant approach.

Other examples of tactical media within video games include The McDonald’s Game. The author of this game takes information from the executive officers of McDonalds and giving it to the public by informing people about how McDonalds does its business and what means it uses to accomplish it.

Chris Crawford’s Balance of the Planet, made in 1990, is another example of tactical media, in which the game describes environmental issues.

Darfur is Dying description   

Camp of Darfuris internally displaced by the o...

Image via Wikipedia

Origination

It is a browser game about the crisis in Darfur, western Sudan. The game won the Darfur Digital Activist Contest sponsored by the company mtvU ((Music Television for Universities campus)). Released in April 2006, more than 800,000 people had played it by September. It is classified as a serious game, specifically a newsgame.
The game design was led by Susana Ruiz (then a graduate student at the Interactive Media Program at the School of Cinematic Arts at the University of Southern California) as a part of TAKE ACTION games. In October 2005 she was attending the Games for Change conference in New York City, where mtvU announced that they, in partnership with other organizations, were launching the Darfur Digital Activist Contest for a game. The game should also be an advocacy tool about the situation in the Darfur conflict. Since mtvU offered funding and other resources, Ruiz decided to participate in this project.
Ruiz formed a design team and spent two months creating a game design document and prototype. The team spent much of the design phase talking to humanitarian aid workers with experience in Darfur and brainstorming how to make a game that was both interesting to play and was an advocacy tool. The Ruiz team’s beta version was put up for review by the public, along with the other finalists, and was chosen as the winner. The team then received funding to complete the game. The game was officially released at a Save Darfur Coalition rally on 30 March 2006.
Map of Darfur, Sudan (
Image via Wikipedia

 

Gameplay

The game begins with the player choosing a member of a Darfuri family that has been displaced by the conflict. The first of the two modes of the game begins with the player controlling the family member, who travelled from the camp to a well and back, while dodging patrols of the janjaweed militia. If captured, the player is informed what has happened to his/her selected character and asked to select another member of the family and try again. If the water is successfully carried back to the camp, the game switches into its second mode – a top down management view of the camp, where the character must use the water for crops and to build huts. When the water runs out the player must return to the water fetching level to progress. The goal is to keep the camp running for seven days.

 

Original caption states,

Image via Wikipedia

 Reception of the game

The game has been reported by mainstream media sources such as The Washington Post, Time Magazine, BBC News and National Public Radio. In an early September 2006 interview, Ruiz stated that it was difficult to determine success for a game with a social goal, but affirmed that more than 800,000 people had played it 1.7 million times since its release.  Moreover, tens of thousands of them had forwarded the game to friends or sent a letter to an elected representative. As of April 2007, the game has been played more than 2.4 million times by over 1.2 million people worldwide.

 The game has been the focus of debate on its nature and impact. Some academics, interviewed by the BBC on the game, stated that anything that might spark debate over Darfur and issues surrounding is a clear gain for the advocates. The others thought that the game oversimplified a complex situation and thus failed to address the actual issues of the conflict.  The game was also criticized for the sponsorship of mtvU, raising the possibility that the game might seem like a marketing tool for the corporation. The official site does not use the word “game”, but refers to Darfur is Dying as a “narrative based simulation.”

 

 Related Articles

 


Next Page »

    April 2019
    M T W T F S S
    « Jul    
    1234567
    891011121314
    15161718192021
    22232425262728
    2930  

    Blog Stats

    • 204,416 hits

    Subscribe with BlogLines

    Translatorsbase

    Dynamic blog-up

    technorati

    Join the discussion about

    Seomoz

    I <3 SEO moz