Why Technical English

Project ITER in progress

December 16, 2012
Leave a Comment
Composed by Galina Vitkova 

The ProjectITER is a large-scale international scientific project intended to prove the practicability of nuclear fusion as an energy source. ITER was originally an acronym for the International Thermonuclear Experimental Reactor, but at present it is not considered an official abbreviation, but is connected with the Latin word “Iter” that means “way”, “journey”, “direction”.

English: deuterium-tritium fusion diagram, poi...

The project is expected to collect the data necessary for the design and operation of the first electricity-producing fusion power plant. As known all nuclear power plants (NPPs) currently operating through over the world produce electricity from fission accompanied by high-level and  long-life radioactive waste, which causes great protests of common people against these NPPs.  

The project is based on the Soviet-Russian technology tokamak (toroidal chamber with magnetic coils), which is a device using a magnetic field to confine plasma in the shape of a torus.

ITER is the culmination of decades of fusion research: more than 200 tokamaks (see also Nuclear powertokamaks) built over the world have paved the way to the ITER experiment.

Some History

Just remind the ITER Agreement was officially signed at the Elysée Palace in Paris on 21 November 2006 by Ministers from the seven ITER Members (China, theEuropean Union, India, Japan, Korea, Russia and theUnited States) in the presence of French President Jacques Chirac and the President of the European Commission José Manuel Barroso. This Agreement established a legal international entity to be responsible for construction, operation, and decommissioning of ITER. The seven ITER Members have shared in the design of the installation, the creation of the international project structure, and in its funding.

Fusion Power Grid

On 24 October 2007, after ratification by all Members, the ITER Agreement entered into force and officially constituted the ITER Organization. ITER was originally expected to cost approximately €5 billion. However, the rising price of raw materials and changes to the initial design have augmented that the amount more than triple, i.e. to €16 billion. Necessary to add that ITER members make 90% of their contribution in kind, i.e. they contribute by equipment. It means the members produce appropriate devices and fund them into the project. The remaining 10% of the contribution are paid in cash by the members. Russia undertook obligations to manufacture 18 high technology systems for the project ITER.

The program is anticipated to last for 30 years – 10 for construction, and 20 years of operation. The reactor is expected to take 10 years to build with completion in 2018 (according to some sources in 2020). The ITER site in Cadarache, France stands ready: in 2010, construction began on the ITER Tokamak and scientific buildings.

Testing

At the end of October 2012 in the Saint Petersburg Research institute of electrophysical devices named after D.V.Efremov the first tests of the unique equipment within the project ITER were launched.

Tokamak - Creating the Sun on Earth

 

The components of the diverter target prototype of the ITER reactor faced to plasma are being tested (the details about the diverter target can be found in Вольфрамовая облицовка диверторной мишени для ). A proprietary test facility IDTF (ITER Divertor Test Facility) has been built up for testing. The facility enables to expose the ITER components to the same thermal burden as during operation and  maintenance of the experimental reactor. The plasma temperature is supposed to grow up to 100 – 150  mil. degrees and expected heat loading on the diverter surface will rise up to 20 MW/m2.  That is why the components under tests shall comply with the very strict requirements.  

The components to be tested on the Russian facility have been produced in Japan. The testing is held in the presence of the ITER Agencies of Russia and Japan representants as well as with participation of the ITER International Organisation specialists.  

The conclusions about the test results are expected to be made by the end of November 2012. It will be the first of numerous series of tests and trials the results of which will enable to master well-proven technology of manufacturing the ITER components.

Diagram illustrating, in a schematic way, the ...

 

PS: The technical terms on the topic can be found in
TrainTE Vocabulary (Power engineering: English–Russian-Czech vocabulary) and in
 Vocabulary – power engineering (Russian–English–Czech).
PPS: The Russian version of the article titled Проект ИТЭР в реализации is published at the blog Technical English Remarks.

  References

 

Related articles

 


Fusion reactors in the world

May 10, 2011
Leave a Comment
Implosion of a fusion microcapsule on the NOVA...

Implosion of a fusion microcapsule

Composed by Galina Vitkova

Fusion power is power generated by nuclear fusion processes. In fusion reactions two light atomic nuclei fuse together to form a heavier nucleus. During the process a comparatively large amount of energy is released.

The term “fusion power” is commonly used to refer to potential commercial production of usable power from a fusion source, comparable to the usage of the term “steam power”. Heat from the fusion reactions is utilized to operate a steam turbine which in turn drives electrical generators, similar to the process used in fossil fuel and nuclear fission power stations.

Fusion power has significant safety advantages in comparison with current power stations based on nuclear fission. Fusion only takes place under very limited and controlled conditions So, a failure of precise control or pause of fueling quickly shuts down fusion power reactions. There is no possibility of runaway heat build-up or large-scale release of radioactivity, little or no atmospheric pollution. Furthermore, the power source comprises light elements in small quantities, which are easily obtained and largely harmless to life, the waste products are short-lived in terms of radioactivity. Finally, there is little overlap with nuclear weapons technology.

 

Fusion Power Grid

Fusion Power Grid

 

Fusion powered electricity generation was initially believed to be readily achievable, as fission power had been. However, the extreme requirements for continuous reactions and plasma containment led to projections which were extended by several decades. More than 60 years after the first attempts, commercial fusion power production is still believed to be unlikely before 2040.

The leading designs for controlled fusion research use magnetic (tokamak design) or inertial (laser) confinement of a plasma.

Magnetic confinement of a plasma

The tokamak (see also Number 29 – Easy such and so / April 2011, Nuclear powertokamaks), using magnetic confinement of a plasma, dominates modern research. Very large projects like ITER (see also  The Project ITER – past and present) are expected to pass several important turning points toward commercial power production, including a burning plasma with long burn times, high power output, and online fueling. There are no guarantees that the project will be successful. Unfortunately, previous generations of tokamak machines have revealed new problems many times. But the entire field of high temperature plasmas is much better understood now than formerly. So, ITER is optimistically considered to meet its goals. If successful, ITER would be followed by a “commercial demonstrator” system. The system is supposed to be similar in purpose to the very earliest power-producing fission reactors built in the period before wide-scale commercial deployment of larger machines started in the 1960s and 1970s.

Ultrascale scientific computing, combined with...

Ultrascale scientific computing

 

Stellarators, which also use magnetic confinement of a plasma, are the earliest controlled fusion devices. The stellator was invented by Lyman Spitzer in 1950 and built the next year at what later became the Princeton Plasma Physics Laboratory. The name “stellarator” originates from the possibility of harnessing the power source of the sun, a stellar object.

Stellarators were popular in the 1950s and 60s, but the much better results from tokamak designs led to their falling from favor in the 1970s. More recently, in the 1990s, problems with the tokamak concept have led to renewed interest in the stellarator design, and a number of new devices have been built. Some important modern stellarator experiments are Wendelstein, in Germany, and the Large Helical Device, inJapan.

Inertial confinement fusion

Inertial confinement fusion (ICF) is a process where nuclear fusion reactions are initiated by heating and compressing a fuel target, typically in the form of a pellet. The pellets most often contain a mixture of deuterium and tritium.

Inertial confinement fusion

Inertial confinement fusion

 

To compress and heat the fuel, energy is delivered to the outer layer of the target using high-energy beams of laser light, electrons or ions, although for a variety of reasons, almost all ICF devices to date have used lasers. The aim of ICF is to produce a state known as “ignition”, where this heating process causes a chain reaction that burns a significant portion of the fuel. Typical fuel pellets are about the size of a pinhead and contain around 10 milligrams of fuel. In practice, only a small proportion of this fuel will undergo fusion, but if all this fuel were consumed it would release the energy equivalent to burning a barrel of oil.

To date most of the work in ICF has been carried out in Franceand the United States, and generally has seen less development effort than magnetic approaches. Two large projects are currently underway, the Laser Mégajoule in France and the National Ignition Facility in theUnited States.

All functioning fusion reactors are listed in eFusion experimental devices classified by a confinement method.

 Reference: Wikipedia, the free encyclopedia http://en.wikipedia


The Project ITER – past and present

April 30, 2011
Leave a Comment

Composed by Galina Vitkova

 

The logo of the ITER Organization

The logo of the ITER Organization

 

„We firmly believe that to harness fusion energy is the only way to reconcile huge conflicting demands which will confront humanity sooner or later“

Director-General Osamu Motojima,  Opening address, Monaco International ITER Fusion Energy Days, 23 November 2010

 

ITER was originally an acronym for International Thermonuclear Experimental Reactor, but that title was dropped in view of the negatively popular connotation of “thermonuclear“, especially in conjunction with “experimental”. “Iter” also means “journey”, “direction” or “way” in Latin, taking into consideration ITER potential role in harnessing nuclear fusion (see also The ViCTE Newsletter Number 28 – SVOMT revising/March 2011 Nuclear power – fission and fusion) as a peaceful power source.

ITER is a large-scale scientific project intended to prove the practicability of fusion as an energy source, to prove that it can work without negative impact. Moreover, it is expected to collect the data necessary for the design and subsequent operation of the first electricity-producing fusion power plant. Besides, it aims to demonstrate the possibility to produce commercial energy from fusion. ITER is the culmination of decades of fusion research: more than 200 tokamaks (see also The ViCTE Newsletter Number 29 – Easy such and so / April 2011 Nuclear power – tokamaks) built over the world have paved the way to the ITER experiment. ITER is the result of the knowledge and experience these machines have accumulated. ITER, which will be twice the size of the largest tokamak currently operating, is conceived as the necessary experimental step on the way to a demonstration of a fusion power plant potential.

The scientific goal of the ITER project is to deliver ten times the power it consumes. From 50 MW of input power, the ITER machine is designed to produce 500 MW of fusion power – the first of all fusion experiments producing net energy. During its operational lifetime, ITER will test key technologies necessary for the next step, will develop technologies and processes needed for a fusion power plant – including superconducting magnets and remote handling (maintenance by robot). Furthermore, it will verify tritium breeding concepts, will refine neutron shield/heat conversion technology. As a result the ITER project will demonstrate that a fusion power plant is able to capture fusion energy for commercial use.

Launched as an idea for international collaboration in 1985, now the ITER Agreement includes China, the European Union, India, Japan, Korea, Russia and the United States, representing over half of the world’s population. Twenty years of the design work and complex negotiations have been necessary to bring the project to where it is today.

The ITER Agreement was officially signed at theElyséePalaceinParison21 November 2006by Ministers from the seven ITER Members. In a ceremony hosted by French President Jacques Chirac and the President of the European Commission M. José Manuel Durao Barroso, this Agreement established a legal international entity to be responsible for construction, operation, and decommissioning of ITER.

On24 October 2007, after ratification by all Members, the ITER Agreement entered into force and officially established the ITER Organization. ITER was originally expected to cost approximately €5billion. However, the rising price of raw materials and changes to the initial design have augmented that amount more than triple, i.e. to €16billion.

Cost Breakdown of ITER Reactor

Cost Breakdown of ITER Reactor

 

The program is anticipated to last for 30 years – 10 for construction, and 20 of operation. The reactor is expected to take 10 years to build with completion in 2018. The ITER site in Cadarache, France stands ready: in 2010, construction began on the ITER Tokamak and scientific buildings. The seven ITER Members have shared in the design of the installation, the creation of the international project structure, and in its funding.

Key components for the Tokamak will be manufactured in the seven Member States and shipped to Franceby sea. From the port in Berre l’Etang on the Mediterranean, the components will be transported by special convoy along the 104 kilometres of the ITER Itinerary to Cadarache. The exceptional size and weight of certain of the Tokamak components made large-scale public works necessary to widen roads, reinforce bridges and modify intersections. Costs were shared by the Bouches-du-Rhône department Council (79%) and theFrenchState (21%). Work on the Itinerary was completed in December, 2010.

Two trial convoys will be organized in 2011 to put the Itinerary’s resistance and design to the test before a full-scale practice convoy in 2012, and the arrival of the first components for ITER by sea.

Between 2012 and 2017, 200 exceptional convoys will travel by night at reduced speeds along the ITER Itinerary, bypassing 16 villages, negotiating 16 roundabouts, and crossing 35 bridges.

Manufacturing of components for ITER has already begun in Members industries all over the world. So, the level of coordination required for the successful fabrication of over one million parts for the ITER Tokamak alone is daily creating a new model of international scientific collaboration.

ITER, without question, is a very complex project. Building ITER will require a continuous and joint effort involving all partners. In any case, this project remains a challenging task and for most of participants it is a once-in-a-lifetime opportunity to contribute to such a fantastic endeavour.

 

References:


    April 2017
    M T W T F S S
    « Jul    
     12
    3456789
    10111213141516
    17181920212223
    24252627282930

    Blog Stats

    • 202,919 hits

    Subscribe with BlogLines

    Translatorsbase

    Dynamic blog-up

    technorati

    Join the discussion about

    Seomoz

    I <3 SEO moz